COMP3153/9153 Homework 1

Temporal Logic, CTL Model Checking, Büchi Automata

Due: Fri 20th March 2020, 10am Submission guidelines are given at the end of this document.

Exercise 1 (LTL – Part I)

(20 Marks)

Assume the set of atomic propositions is $\{a, b, c\}$.

Question 1 For each of the following set of paths S_i , $1 \le i \le 5$, give an LTL formula, φ_i , that best defines S_i (and justify your answer):

- 1. S₁: paths that contain at least two a;
- 2. S₂: paths that do not contain a state satisfying b and $\neg a$;
- 3. S₃: paths that contain at least one c which is not immediately followed neither by a nor b;
- 4. S₄: paths that eventually do not contain a a.
- 5. S_5 : paths that satisfy: if containing a finite number of a then they do not contain an infinite number of c.

Note: you can use the operators **F** and **G**, as well as all other LTL-operations.

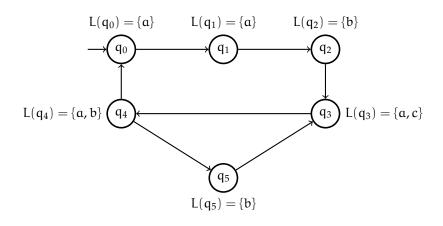


Figure 1: Automaton A

Question 2 Given the labeled automaton A of Fig. 1, with labeling-function L. For each of the following LTL formulas, is there at least one run/trace in A that satisfies the formula? If you answer "Yes" give a witness, and if you answer "No" justify your answer.

1. X X b;	4. FG ((X ¬b) ∨ b);
2. F c;	5. G (a UNTIL $(\neg a \land b)$).
3. G F G (b ∨ a);	

Question 3 Among the LTL formulas (1–5) of Question 2, which are the ones satisfied by automaton A? (Explain your answer).

Exercise 2 (CTL – Part I) (10 Marks)

A system is composed of two tanks, A and B, and a pump Pump. The states of the system are labelled by atomic propositions from the set

{pumpOn, pumpOff, tankAEmpty, TankAFull, TankBEmpty, tankBFull}

Question 4 Consider the following informal requirements and CTL formulas that should formally define the corresponding requirements:

- 1. "It is always the case that if the pump is off, it will be on again in the future." CTL formula: **AG** (pumpOff ⇒ **AF** pumpOn)
- "The pump is always off if tank A is empty or tank B is full".
 CTL formula: AG AF (pumpOff ⇒ (tankAEmpty ∨ tankBFull))
- 3. *"It is always possible to reach a state where tank B is full".* CTL formula: **AG EF** tankBFull

One of the previous CTL formulas does not match the informal requirement. Which one? (Explain your answer).

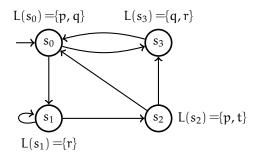
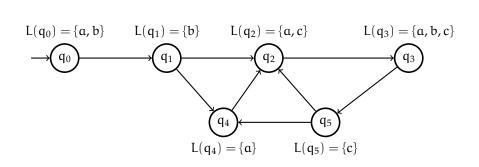


Figure 2: Automaton B

Question 5 What would be the correct CTL formula corresponding to the informal requirement?


Exercise 3 (CTL — Part II) (20 Marks)

Question 6 Consider the automaton B of Figure 2. Check whether, $B, s_0 \models \phi$ and $B, s_2 \models \phi$ for the following CTL formulas ϕ :

- 1. **AF** q
- 2. **AG**(**EF** $(p \lor r)$)
- 3. **EX**(**EX** r)
- $4. \ \textbf{AG}(\textbf{AF} \ q)$

Question 7 Which of the following pairs of CTL formulas are equivalent. For those that are not equivalent, find a model of one of the pair which is not a model of the other.

- 1. **EF** ϕ and **EG** ϕ
- 2. $(\textbf{EF} \varphi) \lor (\textbf{EF} \psi)$ and $\textbf{EF} (\varphi \lor \psi)$
- 3. $(AF \varphi) \lor (AF \psi)$ and $AF (\varphi \lor \psi)$
- 4. **AF** $\neg \phi$ and \neg **EG** ϕ
- 5. true and $(\mathbf{AG} \ \varphi) \Rightarrow (\mathbf{EG} \ \varphi)$
- 6. true and $(\textbf{EG} \varphi) \Rightarrow (\textbf{AG} \varphi)$

(30 Marks)

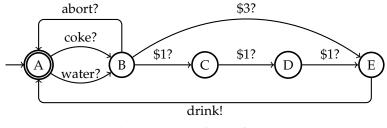
Figure 3: Automaton C

Question 8 Let φ be the following CTL formula:

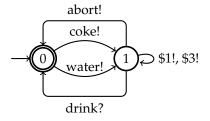
Exercise 4 (CTL Model Checking)

$$\mathsf{AG}\left(b \Rightarrow \mathsf{AX}\neg \mathsf{E}\big((a \lor c) \mathsf{UNTIL} b\big)\right).$$

- 1. Rewrite the formula φ into equivalent formula φ' without **AG**, **AX** and \Rightarrow . We consider that the *or* operator, \lor , is allowed in a CTL formula.
- 2. Give the parse tree of the rewritten formula φ' .
- 3. Manually run the CTL explicit-state marking algorithm from Week 2 on φ' i.e., compute the result of Mark(C, φ'), to determine whether $C \models \varphi'$ (and explain your answer).


Exercise 5 (Büchi Automata)

Figures 4(a) and 4(b) model a vending machine and a customer, respectively. The automata are *Büchi automata*.


The two automata synchronise on matching send/receive actions: a!/a? results in a common action of the components named a.

Question 9 Briefly describe the behaviour of the automata in English.

Question 10 Build the synchronised product *Vending Machine2* × *Customer2*.

(a) Automaton Vending Machine2

(b) Automaton Customer2

Figure 4: Automata for Exercise 5

Submission Guidelines

- Due time: Fri 20th March 2020, 10am. No late submission allowed.
- Submit one PDF file (hw1.pdf) using the CSE give system by typing the command give cs3153 hw1 hw1.pdf on a CSE terminal. Alternatively use the online submission page.
- It is highly recommended that you use LATEX to prepare your document. A guide is provided on the course website.